深度神经网络(DNN)越来越多地应用于恶意软件检测中,其鲁棒性已广泛争论。传统上,对抗性示例生成方案依赖于详细的模型信息(基于梯度的方法)或许多样本来训练替代模型,在大多数情况下都无法使用。我们提出了基于实例的攻击的概念。我们的方案是可解释的,可以在黑箱环境中起作用。给定一个特定的二进制示例和恶意软件分类器,我们使用数据增强策略来生成足够的数据,我们可以从中训练一个简单的可解释模型。我们通过显示特定二进制的不同部分的重量来解释检测模型。通过分析解释,我们发现数据小节在Windows PE恶意软件检测中起重要作用。我们提出了一个新函数,以保存可以应用于数据子分校的转换算法。通过采用我们提出的二进制多样化技术,我们消除了最加权零件对产生对抗性例子的影响。在某些情况下,我们的算法可以欺骗DNN,成功率接近100 \%。我们的方法的表现优于最新方法。最重要的方面是我们的方法在黑框设置中运行,并且可以通过域知识来验证结果。我们的分析模型可以帮助人们改善恶意软件探测器的鲁棒性。
translated by 谷歌翻译
功能级二进制代码相似性检测在网络空间安全性领域至关重要。它可以帮助我们在发布的软件中找到错误并检测专利侵权,并在预防供应链攻击中起关键作用。一个实用的嵌入学习框架依赖于矢量表示系统的鲁棒性以及功能对注释的准确性。传统上,基于学习的方法是基于学习的方法。但是,用准确的标签对不同的功能对进行注释非常困难。这些监督的学习方法很容易被过度训练,并且遭受了鲁棒性问题的困扰。为了减轻这些问题,我们提出了FUN2VEC:二进制功能级表示的对比学习框架。我们采用一种无监督的学习方法,并将二进制代码相似性检测作为实例歧视。 FUN2VEC直接用于分解的二进制功能,并且可以使用任何编码器实现。它不需要标记类似或不同信息的手动。我们使用编译器优化选项和代码混淆技术来生成增强数据。我们的实验结果表明,我们的方法超过了准确性的最先进,并且在几次射击设置中具有很大的优势。
translated by 谷歌翻译
在6G无线通信网络中,按需服务提供是一个至关重要的问题,因为新兴服务的需求大大不同,并且网络资源变得越来越异质和动态。在本文中,我们研究了按需无线资源编排问题,重点是编排决策过程的计算延迟。具体而言,我们将决策延迟延迟到优化问题。然后,提出了一个基于动态的神经网络(DYNN)的方法,可以根据服务要求调整模型复杂性。我们进一步建立一个知识库,代表服务需求之间的关系,可用的计算资源和资源分配绩效。通过利用知识,可以及时选择DYNN的宽度,从而进一步提高编排的性能。仿真结果表明,所提出的方案大大优于传统的静态神经网络,并且在按需服务提供方面也表现出足够的灵活性。
translated by 谷歌翻译
一个良好的动作效果预测模型,称为环境模型,对于在机器人控制,推荐系统和患者治疗选择等许多领域中实现样本有效的决策政策学习非常重要。我们可以使用这种模型进行无限的试验来确定适当的行动,以便可以节省现实世界中的查询成本。它要求模型正确处理看不见的数据,也称为反事实数据。但是,标准数据拟合技术不会自动实现这种概括能力,通常会导致不可靠的模型。在这项工作中,我们在模型学习中引入了反事实风险最小化(CQRM),以推广到特定目标策略查询的反事实数据集。由于目标策略在政策学习中可能是各种各样且未知的,因此我们提出了一个对抗性CQRM目标,其中模型在对抗性策略查询的反事实数据上学习,并最终得出可拖延的解决方案Galileo。我们还发现,对抗性CQRM与对抗模型学习密切相关,从而解释了后者的有效性。我们将伽利略应用于综合任务和现实应用程序中。结果表明,伽利略对反事实数据做出了准确的预测,从而显着改善了现实世界测试的策略。
translated by 谷歌翻译
从相机中检测3D车道是自动车辆的一个上升问题。在此任务中,正确的相机姿势是生成准确通道的关键,可以将图像从透视图转换为顶视图。通过这种转变,我们可以摆脱透视效果,使得3D车道看起来相似,可以精确地装配低阶多项式。然而,主流3D车道探测器依赖于其他传感器提供的完美相机姿势,这是昂贵的并且遇到多传感器校准问题。为了克服这个问题,我们建议通过用双级框架估计来自单个图像的摄像机姿势来预测3D车道。第一阶段针对从透视图图像的相机姿势任务。为了提高姿势估计,我们介绍了辅助3D车道任务和几何约束,从多任务学习中受益,这增强了3D和2D之间的常规,以及在上述两个任务中的兼容性。第二阶段针对3D Lane任务。它使用先前估计的姿势来生成包含距离不变通道外观的顶视图,以预测准确的3D车道。实验表明,如果没有地面真相相机姿势,我们的方法优于最先进的完美相机姿势的方法,并且具有最少的参数和计算。代码在https://github.com/liuruijin17/clgo提供。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
A noisy training set usually leads to the degradation of the generalization and robustness of neural networks. In this paper, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels. Specifically, we first present a Scalable Penalized Regression (SPR) method, to model the linear relation between network features and one-hot labels. In SPR, the clean data are identified by the zero mean-shift parameters solved in the regression model. We theoretically show that SPR can recover clean data under some conditions. Under general scenarios, the conditions may be no longer satisfied; and some noisy data are falsely selected as clean data. To solve this problem, we propose a data-adaptive method for Scalable Penalized Regression with Knockoff filters (Knockoffs-SPR), which is provable to control the False-Selection-Rate (FSR) in the selected clean data. To improve the efficiency, we further present a split algorithm that divides the whole training set into small pieces that can be solved in parallel to make the framework scalable to large datasets. While Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline, we further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data. Experimental results on several benchmark datasets and real-world noisy datasets show the effectiveness of our framework and validate the theoretical results of Knockoffs-SPR. Our code and pre-trained models will be released.
translated by 谷歌翻译